Synergies and Contradictions Between Optimizing Care and Environmental Sustainability

Agenda

1. Introduction

2. Case Studies:

- 1. Hospital Building Area
- 2. Impact of Electrification
- 3. Embodied Carbon
- 4. Inpatient Room Module
- 5. Procurement Model
- 3. Path Forward
- 4. Q&A

Quality Care Environment

Quality Care Environment

Planning and Design Trends

- EBD/POE
- Patient & Familycentred care
- Healing environments, biophilic design
- Amenities for health and wellness

Patient and Staff Safety

- IPAC and minimizing HIA's
- Safety and Security (CPTED)
- Human factors

Quality Care Environment

Patient and Staff Safety

- IPAC and minimizing HIA's
- Safety and Security (CPTED)
- Human factors

Accessible Design

- Bariatric Design
- Elder Care
- Diversity, Equity, Inclusion
- Indigeneity

Providence Care Hospital – Mental Health/Rehabilitation (Parkin/Adamson)

Quality Care Environment

Focus on Operational Efficiency

- Sneaker time
- Segregation of flow
- LEAN process improvement

Well documented industry standards

- Codes, standards, best practice guidelines
- Savvy procurement process
- PSOSSoRrequirements

Low Carbon, Resilience and Environmental Sustainability Guidelines for Healthcare New Construction

rsion: 2023.07: Updated: July 30, 2023

Climate Crisis

"Earth has just seen its hottest three - month spell on record"

"World on Fire: 2023 is Canada's worse wildfire season on record"

"Rapid ice melt in west Antarctica now inevitable, research shows"

"Global sea surface temperature reaches a record high"

Healthcare accounts for nearly 5.25% of the national total emissions

Global Road Map for Health Care Decarbonization, Key facts (2014)

Commitment Area 1

Climate Resilient Health Systems

COP 26 – Health Program, WHO, HCWH, 2021

Climate Resilience Guidelines for BC Health Facility Planning & Design December 2020 | Version 1.1

Commitment Area 2

Sustainable low carbon health systems

Global Road Map for Health Care

Decarbonization

A navigational tool for achieving zero emissions with climate resilience and health equity

Health Care Without Harm

WHO GUIDANCE FOR CLIMATE RESILIENT AND ENVIRONMENTALLY SUSTAINABLE HEALTH CARE FACILITIES

Low Carbon Healthcare

Decarbonizing Healthcare

- Energy / Operational Carbon
- Embodied Carbon

Ongoing Growth in Hospital Building Area

Program net, component and building gross areas are growing

- Current Best Practices in healthcare planning standards **increases building area**
- Also increases energy consumption, emissions, embodied carbon

Ongoing Growth in Hospital Building Area

Program net, component and building gross areas are growing

Quality Care Environment:

- Codes, standards well established
- PSOSSoRrules meet and exceed

Low Carbon Healthcare

- Scope not clearly defined
- Limited codes/standards/guidelines
- Not fully embedded in PSOSSoR

Ongoing Growth in Hospital Building Area

Net Area (room) growth:

Drivers:

- Codes/Standards
- IPAC
- Accessibility
- FFE
- Patient/Staff safety

Ongoing Growth in Hospital Building Area

Component Area (departmental) growth :

Drivers:

- Segregation of flow

 On stage/offstage
 - \circ Separation of clean/soiled
- Standardization
- Single patient rooms
- Privacy/dignity (e.g. registration)

Row Labels	Program Grossing Ratio	Design Grossing Ratio
AMB SERV MED SURG	1.47	1.60
AMB SERV WOMEN AND CHILD	1.48	1.50
MENTAL HEALTH AMB	1.46	1.52
CRITICAL CARE	1.53	1.61
MATERNAL NEWBORN	1.57	1.61
MED SURG	1.55	1.67
MENTAL HEALTH	1.55	1.70
NICU	1.49	1.60
PAEDIATRIC	1.55	1.60
CARDIAC CATHERIZATION	1.52	1.56
CARDIAC CLINICS AND DIAG	1.48	1.61
DIAGNOSTIC IMAGING	1.49	1.69
EMERGENCY DEPARTMENT	1.70	1.84
ENDOSCOPY	1.55	1.56
RENAL IMPATIENT DIALYSIS	1.48	1.54
LAB MED & GENETICS	1.39	1.44
PHARMACY	1.34	1.37
SURGICAL INTERVENTIONAL	1.54	1.55
CORPORATE ADMIN	1.28	1.30
HUMAN RESOURCES	1.30	1.38
INFORMATION SERVICES	1.25	1.31
INTERPROF EDU & LEARN	1.29	1.35
PROFESSIONAL PRACTICE	1.30	1.04
PATIENT REGISTRATION	1.38	1.40
PUBLIC AREAS RETAIL AND AMENITY	1.18	1.15
RESEARCH AND INNOVATION	1.31	1.38
SPIRITUAL CARE	1.28	1.27
STAFF + MED STAFF	1.29	1.39
VOLUNTEER RESOURCES	1.25	1.39
BIOMEDICAL	1.31	1.18
COMMAND CENTRE	1.32	1.35
CORPORATE SERVICES	1.17	1.13
FACILITIES	1.50	1.55
MATERIALS MANAGEMENT	1.17	1.19
MDRD	1.38	1.45
FOOD SERVICES	1.25	1.28
SECURITY SERVICES FIRE AND LIFE SAFETY	1.30	1.54
Grand Total	1.47	1.54

Ongoing Growth in Hospital Building Area

Building Gross Area growth:

Drivers:

- Building systems
 - Mechanical systems
 ATS systems (AGV, AMR, chutes, etc)
 - De dese de serve de s/ste s de sde
- Redundancy codes/standards
- Flexibility, Adaptability, Expandability
- 'Special Features' (COVID, amenities)
- Electrification

Era	BGA Gross-up*
2010-2015	~ 1.45 - 1.50
2016-2020	~ 1.47 - 1.55
2020 to present	~ 1.49 - <1.6
*BGA/CGA (departmental) Acute care hospital s	Based on Parkin projects

Example - new 500-600 bed acute care facility:

- 1,000,000 CGA x 1.45 = 1,450,000 BGA
- 1,000,000 CGA x 1.55 = 1,550,000 BGA
- 100,000 BGA increase

Corner Brook Acute Care Hospital

Efficient Planning Drivers

- Relaxed PSOS rules
 - Adjacencies, travel distances, etc.
 - \circ Stacked podium & tower
 - Centralized circulation core
 - Leveraged sloping site
- Cruciform IPU plan
- Efficient clinical planning
- Geothermal heating/cooling

Corner Brook Acute Care Hospital

Efficient Clinical Planning

- Significantly reduced building gross and departmental (component) area compared to similar facilities
- 15% less floor area

The Most Efficient Acute Care Hospital We Have Designed to Date. Without compromising the required net room areas and functionality, the design achieved 15% less building grossing factor and 10% less departmental grossing factors on average than comparable facilities – resulting in operational savings including:

- Reduced energy use of 1,500,000 kwn annually, saving over **\$125,000/yr** in electricity costs
- Maintenance savings of approximately \$240,000/yr
- Estimated hospital operational savings of approximately \$100,000/yr through a reduction in "sneaker time" and other efficiencies

Building Gross/Departmental Gross/Net Area Comparison										
Floor Area Ratios	СВ	ACH	average	%	Hospital 1	Hospital 2	Hospital 3	Hospital 4	Hospital 5	Hospital 6
BGA to Program Net		1.96	2.31	34.85	2.4	2.21	2.35	2.19	2.37	2.34
DGA to Program Net		1.41	1.56	90.48	1.55	1.52	1.5	1.51	1.59	1.68
BGA to DGA		1.39	1.50	92.56	1.55	1.46	1.57	1.45	1.59	1.39
Note: Building areas shared by PCL from 6 recently completed acute care hospital projects. Projects names are confidential										

Ongoing Growth in Hospital Building Area

Increased scrutiny on:

- Codes, standards, guidelines
- PSOSSoRrules
- NSA/CGA/BGA analysis
- Planning innovations

Too Big?

Just Right?

Still Growing?

Impact of Electrification

Electrification: Innovation Across Canada

Projects Across Canada

- Cornerbrook, Newfoundland
- Cowichan, BC

Cowichan Hospital Performance Targets

Project Targets

Minimize Greenhouse Gas Emission 4.182 kgCO2e/m²/year

Maximize Energy Efficiency *392 kWh/m²/year*

Embodied Carbon 15% reduction on baseline

Additional Project Targets

LEED Gold: Optimize Energy Performance

Cowichan – Mechanical System Overview Drivers Energy Consumption

Large ventilation and air flow demands:

- Large fans to move air
- Significant energy used for heating and cooling
- Large humidification loads

Heating and cooling plant design:

- Heating and cooling sequence which optimizes high efficiency systems: Heat recovery chillers > Air sourced heat pumps > Electric boilers
- Heat recovery chillers to optimize the use of "waste heat" for heating the building

Cowichan – Full Electrification Overview

Mechanical Systems

Fully electrified mechanical systems, electrification of kitchen equipment and photovoltaic array support in achieving: • 336kWhr/m2/yr

• 3.5kgC02e/m2

Renewable Energy

Onsite solar panels provide carbon-free power, supplying more than 2% of the hospital's energy needs. The carbon savings are the equivalent of taking 38 passenger cars off the road each year.

Energy Capture and Reuse

Reduced Energy Demand

incandescent bulbs.

LED lighting will be used throughout the

hospital, using 75% less energy than

Heat produced by the mechanical systems, like heating and cooling systems, is captured and used to preheat water and air, reducing overall energy consumption.

Process Load Steam / humidification and DHW fully electrification.

Minimized Heat Loss / Gain

A high performing building envelope minimizes heat loss. This includes insulated walls and roof and triple-glazed windows to the south and west of patient tower to minimize solar heat gain.

Cowichan – Operational Energy Use Intensity Results

(17 points targeted of 20) Alternative Energy Performance Metric

* Interim results based on available information as of Nov 2023.

Electrification - Considerations

	Full Electric	Hybrid	Gas Primary	Notes
Clinical				Consideration to increased floor area for electrification
Operational Carbon				Electrification provides opportunity to meet carbon reduction targets
Embodied Carbon				
Building area				Considering gas as the base Many issues at interplay
First Capital Cost				
Generator size				

Corner Brook Performance

- Lack of natural gas in Newfoundland and Labrador for traditional heating and cooling systems
- Seeking Cost Effectivesolutions that positively-affect the surrounding environment
- Geothermal System ideal low-energy and low-emission solution for heating and cooling proposed by Corner Brook Health Partnership (Project Co.)

Over \$350,000/yr in Electricity Cost Savings

from our investment in a geothermal system vs a conventional heating plant - 4,600,000 kWh are saved annually, enough energy to heat 500 homes a year.

Corner Brook Performance

Overview

- DBFM (P3) Project
- \$700M (NPV)
- ~600,000 sf
- 164 beds (replacement)
- Substantial Completion Nov 2023

Corner Brook Performance

Largest Geothermal System in Canadian Healthcare

- Geothermal field stretching 96,000' (29,300m)
- ~375 boreholes
- 600' deep
- ~500,000' of piping

Zero-emissions* for heating & cooling

*including hydro electric power

Corner Brook Performance

The Payback

- 17-year simple payback period (based on current electricity costs)
- True payback period anticipated to improve over lifecycle (as carbon pricing goes up)
- Energy modelling team (Footprint) project 35% energy cost savings

Building Performance & Sustainability

Embodied Carbon

Operational

Carbon

What is Embodied Carbon?

- Carbon dioxide (CO2)or greenhouse gas (GHG) emissions associated with the manufacture and use of a product or service.
- Measured via global warming potential (GWP), and quantified in kilograms of CO₂ equivalent (kg CO₂ e).

Image credit : https://www.armstrongceilings.com/commercial/en/per formance/sustainable-building-design/embodiedcarbon-in-buildings.html

Building Performance & Sustainability

How is Embodied Carbon Measured?

Life Cycle Assessment (LCA) – Evaluation of the impacts of products/ or service on the environment throughout its life span.

Environmental Product Declaration (EPD):

standardized declaration for a product or product family that offer a comparable, objective and third party verified environmental performance.

Building Performance & Sustainability

Why is Embodied Carbon an important Metric?

- Accounts for approximately 30% of the overall emissions over the lifecycle of a building
- As buildings become more efficient, embodied carbon is a significant contributor to emissions for the project.

Building Performance & Sustainability

Where in a building is the significant stores of Embodied Carbon?

Envelope & Structure accountfor over half of embodied carbon emissions for the building

Building Performance & Sustainability Interior Finishes

Interior Finishes account for over 13% of overall carbon footprint of building.

Building Performance & Sustainability Interior Finishes

Complex Contextual Conversation

Building Performance & Sustainability Interior Finishes

Wood Finishes are widely advocated as both restorative biophilic design elements and low carbon interior finishes.

IPAC consideration.

Interior Finishes - Considerations

	Natural Wood	Wood Look Laminate	Notes
Patient Experience/ Clinical Excellence			Considerations for impact to acoustics, Air Quality
IPAC (cleaning protocols)			*
Embodied Carbon			* Impacted by regional sourcing, material composites, and end of life process (ie. Capacity to recycle? Cradle to cradle considerations?).
Esthetics			
Durability			*Impacted by capacity to repair over life of product.
Initial First Cost			

Building Performance & Sustainability Interior Finishes

Flooring: Rubber vs Vinyl vs Linoleum

Considerations: Patient/Staff Comfort, IPAC, VOCs, Regional Sourcing.

Interior Finishes - Considerations

	Rubber Flooring	Linoleum	Vinyl Sheet	Notes
Patient Experience/ Clinical Excellence (Acoustics/ Soft Underfoot/VOCs)				Considerations for impact to acoustics, Air Quality, impact on staff fatigue
IPAC (cleaning protocols)				
Embodied Carbon				** Impacted by regional sourcing.
Esthetics				
Durability				**Impacted by installation protocols, foot traffic,
Initial First Cost				

Cowichan Embodied Carbon Approach

DENNER

Clinical Delivery, Energy and the Patient Experience

Patient Washroom Location Outboard – maximum patient visibility from the corridor

BEST-CASE SCENARIO South-facing IPU showing Av. Lux in daylit hours

- Staff visibility of patient
- Impact on patient privacy
- Impact on access to daylight and quality views

Patient Washroom Location

- Most space in family area
- Better Daylight and Quality views
- Reduces staff visibility of patient

Target:

Spatial Daylight Autonomy (sDA): $\geq 55\% = 2$ LEED Points $\geq 75\% = 3$ LEED points

🔲 Imperceptible 🧧 Perceptible 📕 Disturbing 📕 Intolerable

Target:

Annual Solar Exposure (ASE) (Directional Glare): $\leq 20\%$

Patient Washroom Location - Considerations

	Outboard	Shared / Nested	Inboard	Notes
Clinical (staff view of patient)				Consider patient privacy concerns
Operational Carbon				Increase in floor area leads to increase in conditioning needs
Embodied Carbon				Increase in floor area leads to increase in materiality
Daylight and Quality View				
Space in family zone				
Acoustic separation				

Patient Window Sizing Healing Environment

- Patient Room window size has been maximized to meet daylight and view out best practices
- Balanced with the peak cooling load

 keeping system at 4ACH
- Window at 35.52sf

Patient Window Sizing Healing Environment

• 1,260 design options for window design

Consideration: Reduce Window Size 100% Outside Air in the Patient Tower (Southern Ontario)

Mechanical PSOS Complaint Approach

- Window at 42sf,
- 6ACH

Proposed Approach: Reduce window size to 30sf

 Provide 100% outside air in Patient Tower and target 4 ACH in patient rooms. [Dependent on envelope performance and window/ wall ratio.] Remaining areas of facility would operate in accordance with 1.4.5.12.4.1 / 1.4.5.12.4.2,

Decision:

• Reduce window nominally in inpatient rooms to coordinate with other descoping measures.

Patient Window Sizing - Considerations

	Small Window	Optimizing Window Size	100% WWR	Notes
Clinical				Improved healing environment (daylight and view out)
Operational Carbon				Energy impact / mechanical size impact
Embodied Carbon				
Other Considerations				Coordinate with all disciplines to find balance Local climate considerations

Procurement Model

Decarbonization in Healthcare Balancing objectives

- Key Performance Areas
- Key Performance Indicators

Decarbonization in Healthcare Impact on contract models

- Allow flexibility for innovation
 - Pain share / gain share-Safe space to explore
- What is the project objective
 - Performance based targets

island health

Decarbonization in Healthcare

Optimizing Care and Environmental Sustainability

- Low Carbon Healthcare MANDATORY
- Codes, standards, guidelines, policy
- Early inclusion (e.g. master planning, KPI'setc)
- Leverage 'value driven' procurement models
- Focus on PSOSSoRrules
- Designer/vendor innovations
- Business Case Analysis

